[4]

- Q.6 i. Define Hamiltonian Cycle with the Example
 - ii. What is backtracking? Find a solution to the 4 queens Problem using 7 Backtracking Strategy.
 - iii. What is Branch and Bound Technique? Solve the TSP for the following 7 matrix.

00	7	3	12	8
3	∞	6	14	9
5	8	∞	6	18
9	3	5	∞	11
18	14	9	8	∞

Total No. of Questions: 6

3

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2018 CS3CO13/IT3CO06 Design and Analysis of Algorithms Programme: B.Tech. Branch/Specialisation: CSE/IT

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1	i.	If algorithm A has running time 7n^2+3n+9 and algorithm B has running				1		
		time 2n^2 then,						
		(a) Both have same asymptotic time complexity						
		(b) A is asymptotical	lly greater					
		(c) B is asymptotical	ly greater					
		(d) None of these						
	ii.	Complexity of the re	currence relation	on $T(n)=3T(n/3)$)+n^2	1		
		(a) Θ (n log n)	(b) Θ (log n)	(c) Θ (n^2)	(d) Θ (n^3)			
	iii.	Average case complexity of binary search is						
		(a) Θ (n^2)	(b) Θ (n/2)	(c) Θ (1)	(d) Θ (log n)			
	iv.	When the given inp	uts are already	sorted, which	sorting technique gives	1		
		worst performance.						
		(a) Merge Sort		(b) Quick Son	t			
		(c) Heap Sort		(d) None of the	nese			
	v.	Which of the following	ing is true about	t Huffman Cod	ing	1		
		(a) Huffman Coding	g may become le	ossy in some ca	ases			
		(b) Huffman Codes may not be optimal lossless codes in some cases						
		(c) In Huffman codi	ng, no code is p	prefix of any of	her code			
		(d) All of these	t	1 - 4		1		
	V1.	Number of Spanning $(x) = n^{-1}$	g tree of a comp	tete graph with $(x) = n^{n-2}$	n vertices are	I		
		(a) n^{n}	(0) nC $(n-1)$	(c) n^{-1}	(a) mone of these			

	vii.	If an optimal solution can be created for a problem by constructing optimal solutions for its subproblems, the problem possesses property.	1
		(a) Overlapping subproblems (b) Optimal substructure	
		(c) Memorization (d) Greedy	
	viii.	When a top-down approach of dynamic programming is applied to a problem, it usually	
		(a) Decreases both, the time complexity and the space complexity	
		(b) Decreases the time complexity and increases the space complexity	
		(c) Increases the time complexity and decreases the space complexity	
		(d) Increases both, the time complexity and the space complexity	
	ix.	Which of the following is not a backtracking algorithm?	1
		(a) Knight tour problem (b) N queen problem	
		(c) Tower of Hanoi (d) M coloring problem	
	х.	What is the minimum colour required to color a cube's vertices	1
		(a) 4 (b) 3 (c) 2 (d) 6	
Q.2	i.	(a) Differentiate between Recursive and Iterative Algorithm.	4
		(b) Explain formula of Master's Method for solving recursive algorithm.	
	ii.	Sort these elements using Insertion Sort in ascending order.	6
		75, 65, 45, 47, 94, 85, 77, 62, 87	
		How many number of shifting is required to sort the above elements.	
OR	iii.	Solve these Recurrence Relation	6
		(a) $T(n) = 3T(n/3) + \Theta(n)$	
		(b) $T(n) = T(n-1) + 5n$	
		(c) $T(n) = 8T(n/4) + \Theta(n \log n)$	
Q.3	i.	What is Stable Sort? Name any two Stable Sorting Algorithm	3
	ii.	What is Divide & Conquer Strategy. Write Binary Search Algorithm.	7
		Analyse complexity of algorithm in best and worst case.	
OR	iii.	Sort these elements using Heap sort (Max Heap)	7
		98, 77, 55, 80, 99, 64, 91, 22, 83, 44, 65, 86, 90	
Q.4	i.	What is basic difference between Prim's and Kruskal's Algorithm	2
	ii.	Find Optimal Merge Pattern for 7 files whose length are 12,	3
		9,3,11,15,20,13	

iii. Find the single source shortest path with vertex 'A' as the source

OR iv. Construct the Huffman Code for the following data.

		- 101 010 10			
Character	Α	В	С	D	E
Probability	0.4	0.1	0.2	0.15	0.15

Decode the text whose ending 100010111001010 using the above Huffman Code.

Q.5 i. Solve the following instances of 0/1 Knapsack Problem using Dynamic 4 Programming

Item	1	2	3	4
Weight	4	7	5	3
Value	40	42	25	12

- The Capacity of Knapsack W is 10.
- ii. Explain how a reliability design can be obtained using Dynamic 6 Programming.
- OR iii. Consider Multistage Graph G

Find the Cost from shortest path from S to T using Multistage graph method?

5

6

5

		Marking Scheme	
	С	S3CO13/IT3CO06 Design and Analysis of Algorithms	
Q.1	i.	If algorithm A has running time $7n^2+3n+9$ and algorithm B has running time $2n^2$ then,	1
		(a) Both have same asymptotic time complexity	
	ii.	Complexity of the recurrence relation $T(n)=3T(n/3)+n^2$	1
	;;;	$(C) \ominus (IF2)$	1
	111.	(d) Θ (log n)	1
	iv.	When the given inputs are already sorted, which sorting technique gives worst performance. (b) Ouick Sort	1
	v.	Which of the following is true about Huffman Coding	1
		(c) In Huffman coding, no code is prefix of any other code	
	vi.	Number of Spanning tree of a complete graph with n vertices are (c) $p^{(n-2)}$	1
	vii.	If an optimal solution can be created for a problem by constructing optimal solutions for its subproblems, the problem possesses property.	1
	viii.	 (b) Optimial substructure When a top-down approach of dynamic programming is applied to a problem, it usually	
	ix.	Which of the following is not a backtracking algorithm?	1
	x.	(c) Tower of HanoiWhat is the minimum colour required to color a cube's vertices.(c) 2	1
Q.2	i.	Differentiate between Recursive and Iterative Algorithm. 2 differences 2 marks Formula of Master's Method for solving recursive algorithm.	4
	ii.	Sort these elements using Insertion Sort in ascending order. 75, 65, 45, 47, 94, 85, 77, 62,87	6
		Sorting Passwise 4 marks	

Number of shifting is required to sort the above elements. .

2	marks
	marks

OR	iii.	Solve these Recurrence Relation		6
		(a) T(n)= 3T(n/3)+ Θ (n)	2 marks	
		(b) T(n)= T(n1)+ 5n	2 marks	
		(c) $T(n) = 8T(n/4) + \Theta (n \log n)$.	2 marks	
Q.3	i.	What is Stable Sort ?		3
_		Definition	2 marks	
		Name any two Stable Sorting Algorithm		
		Names	1 mark	
	ii.	What is Divide & Conquer Strategy.	2 marks	7
		Write Binary Search Algorithm.	3 marks	
		Analyse complexity of algorithm in best and worst c	ase.	
			2 marks	
OR	iii.	Sort these elements using Heap sort (Max Heap)		7
		98,77,55,80,99,64,91,22,83,44,65,86,90		
		Stepwise		
0.4	i.	What is basic difference between Prims and Krukal	Algorithm	2
X		2 differences	2 marks	_
	ii.	Find Optimal Merge Pattern for 7 files whose 1	ength are 12.	3
		9,3,11,15,20,13		•
		Stepwise	2 marks	
	iii.	Find the single source shortest path with vertex 'A' a	as the source	5
		$ \begin{array}{c} 4 \\ 0 \\ 4 \\ 3 \\ E \\ 2 \\ 5 \\ 5 \end{array} $		
		Till 2 steps Relaxation Formula5	5 marks	
OR	iv.	Construct the Huffman Code for the following data.		5
		Character A B C D	E	
		Probability 0.4 0.1 0.2 0.15	0.15	

Tree3 marksDecode the text whose ending 100010111001010 using the aboveHuffman Code.Decoding2 marks

Q.5 i. Solve the following instances of 0/1 Knapsack Problem using 4 Dynamic Programming

Item	1	2	3	4
Weight	4	7	5	3
Value	40	42	25	12

The Capacity of Knapsack W is 10.

Full Solution

 ii. Explain how a reliability design can be obtained using Dynamic 6 Programming.
 Algorithm or complete definition 4 marks Example 2 marks

OR iii. Consider Multistage Graph G

6

4 marks

Find the Cost from shortest path from S to T using Multistage graph method? At least till 2 steps formula 6 marks

At least till 2 steps formula	0 marks
If direct solution then	4 marks

Q.6 i.	i.	Define Hamiltonian Cycle with the Example			
		Definition 2 mark	S		
		Example 1 mark	S		
	•		1 1	_	

What is backtracking? Find a solution to the 4 queens Problem 7 using Backtracking Strategy.

Definition	2 marks
Solution	5 marks

ii. What is Branch and Bound Technique? Solve the TSP for the **7** following matrix.

10	110 11 1112	5					
C	α	7	3	12	8		
<u>,</u>	3	8	6	14	9		
4	5	8	∞	6	18		
ç	9	3	5	∞	11		
1	18	14	9	8	∞		
D	Definition						
S	olution	5 marks					
